3.8.52 \(\int \frac {\sqrt {f+g x} (a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{(d+e x)^{5/2}} \, dx\) [752]

Optimal. Leaf size=376 \[ -\frac {5 (c d f-a e g)^3 \sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 c d g^3 \sqrt {d+e x}}+\frac {5 (c d f-a e g)^2 (f+g x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{32 g^3 \sqrt {d+e x}}-\frac {5 (c d f-a e g) (f+g x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 g^2 (d+e x)^{3/2}}+\frac {(f+g x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2}}-\frac {5 (c d f-a e g)^4 \sqrt {a e+c d x} \sqrt {d+e x} \tanh ^{-1}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {f+g x}}\right )}{64 c^{3/2} d^{3/2} g^{7/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \]

[Out]

-5/24*(-a*e*g+c*d*f)*(g*x+f)^(3/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/g^2/(e*x+d)^(3/2)+1/4*(g*x+f)^(3/2)
*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/g/(e*x+d)^(5/2)-5/64*(-a*e*g+c*d*f)^4*arctanh(g^(1/2)*(c*d*x+a*e)^(1/
2)/c^(1/2)/d^(1/2)/(g*x+f)^(1/2))*(c*d*x+a*e)^(1/2)*(e*x+d)^(1/2)/c^(3/2)/d^(3/2)/g^(7/2)/(a*d*e+(a*e^2+c*d^2)
*x+c*d*e*x^2)^(1/2)+5/32*(-a*e*g+c*d*f)^2*(g*x+f)^(3/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/g^3/(e*x+d)^(1
/2)-5/64*(-a*e*g+c*d*f)^3*(g*x+f)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c/d/g^3/(e*x+d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.43, antiderivative size = 376, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {878, 884, 905, 65, 223, 212} \begin {gather*} -\frac {5 \sqrt {d+e x} \sqrt {a e+c d x} (c d f-a e g)^4 \tanh ^{-1}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {f+g x}}\right )}{64 c^{3/2} d^{3/2} g^{7/2} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac {5 \sqrt {f+g x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)^3}{64 c d g^3 \sqrt {d+e x}}+\frac {5 (f+g x)^{3/2} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)^2}{32 g^3 \sqrt {d+e x}}-\frac {5 (f+g x)^{3/2} \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2} (c d f-a e g)}{24 g^2 (d+e x)^{3/2}}+\frac {(f+g x)^{3/2} \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[f + g*x]*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(d + e*x)^(5/2),x]

[Out]

(-5*(c*d*f - a*e*g)^3*Sqrt[f + g*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(64*c*d*g^3*Sqrt[d + e*x]) +
(5*(c*d*f - a*e*g)^2*(f + g*x)^(3/2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(32*g^3*Sqrt[d + e*x]) - (5*
(c*d*f - a*e*g)*(f + g*x)^(3/2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(24*g^2*(d + e*x)^(3/2)) + ((f
+ g*x)^(3/2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(4*g*(d + e*x)^(5/2)) - (5*(c*d*f - a*e*g)^4*Sqrt[
a*e + c*d*x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[g]*Sqrt[a*e + c*d*x])/(Sqrt[c]*Sqrt[d]*Sqrt[f + g*x])])/(64*c^(3/2)*d
^(3/2)*g^(7/2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 878

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(-(d + e*x)^m)*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^p/(g*(m - n - 1))), x] - Dist[m*((c*e*f + c*d*g - b*e
*g)/(e^2*g*(m - n - 1))), Int[(d + e*x)^(m + 1)*(f + g*x)^n*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b,
c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !Intege
rQ[p] && EqQ[m + p, 0] && GtQ[p, 0] && NeQ[m - n - 1, 0] &&  !IGtQ[n, 0] &&  !(IntegerQ[n + p] && LtQ[n + p +
2, 0]) && RationalQ[n]

Rule 884

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(-e)*(d + e*x)^(m - 1)*(f + g*x)^n*((a + b*x + c*x^2)^(p + 1)/(c*(m - n - 1))), x] - Dist[n*((c*e*f + c*d
*g - b*e*g)/(c*e*(m - n - 1))), Int[(d + e*x)^m*(f + g*x)^(n - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b,
c, d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !Int
egerQ[p] && EqQ[m + p, 0] && GtQ[n, 0] && NeQ[m - n - 1, 0] && (IntegerQ[2*p] || IntegerQ[n])

Rule 905

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Dist[(a + b*x + c*x^2)^FracPart[p]/((d + e*x)^FracPart[p]*(a/d + (c*x)/e)^FracPart[p]), Int[(d + e*x)^(m + p)*
(f + g*x)^n*(a/d + (c/e)*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2
 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] &&  !IGtQ[m, 0] &&  !IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2}} \, dx &=\frac {(f+g x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2}}-\frac {(5 (c d f-a e g)) \int \frac {\sqrt {f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx}{8 g}\\ &=-\frac {5 (c d f-a e g) (f+g x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 g^2 (d+e x)^{3/2}}+\frac {(f+g x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2}}+\frac {\left (5 (c d f-a e g)^2\right ) \int \frac {\sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}} \, dx}{16 g^2}\\ &=\frac {5 (c d f-a e g)^2 (f+g x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{32 g^3 \sqrt {d+e x}}-\frac {5 (c d f-a e g) (f+g x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 g^2 (d+e x)^{3/2}}+\frac {(f+g x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2}}-\frac {\left (5 (c d f-a e g)^3\right ) \int \frac {\sqrt {d+e x} \sqrt {f+g x}}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{64 g^3}\\ &=-\frac {5 (c d f-a e g)^3 \sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 c d g^3 \sqrt {d+e x}}+\frac {5 (c d f-a e g)^2 (f+g x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{32 g^3 \sqrt {d+e x}}-\frac {5 (c d f-a e g) (f+g x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 g^2 (d+e x)^{3/2}}+\frac {(f+g x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2}}-\frac {\left (5 (c d f-a e g)^4\right ) \int \frac {\sqrt {d+e x}}{\sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{128 c d g^3}\\ &=-\frac {5 (c d f-a e g)^3 \sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 c d g^3 \sqrt {d+e x}}+\frac {5 (c d f-a e g)^2 (f+g x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{32 g^3 \sqrt {d+e x}}-\frac {5 (c d f-a e g) (f+g x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 g^2 (d+e x)^{3/2}}+\frac {(f+g x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2}}-\frac {\left (5 (c d f-a e g)^4 \sqrt {a e+c d x} \sqrt {d+e x}\right ) \int \frac {1}{\sqrt {a e+c d x} \sqrt {f+g x}} \, dx}{128 c d g^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ &=-\frac {5 (c d f-a e g)^3 \sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 c d g^3 \sqrt {d+e x}}+\frac {5 (c d f-a e g)^2 (f+g x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{32 g^3 \sqrt {d+e x}}-\frac {5 (c d f-a e g) (f+g x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 g^2 (d+e x)^{3/2}}+\frac {(f+g x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2}}-\frac {\left (5 (c d f-a e g)^4 \sqrt {a e+c d x} \sqrt {d+e x}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {f-\frac {a e g}{c d}+\frac {g x^2}{c d}}} \, dx,x,\sqrt {a e+c d x}\right )}{64 c^2 d^2 g^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ &=-\frac {5 (c d f-a e g)^3 \sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 c d g^3 \sqrt {d+e x}}+\frac {5 (c d f-a e g)^2 (f+g x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{32 g^3 \sqrt {d+e x}}-\frac {5 (c d f-a e g) (f+g x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 g^2 (d+e x)^{3/2}}+\frac {(f+g x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2}}-\frac {\left (5 (c d f-a e g)^4 \sqrt {a e+c d x} \sqrt {d+e x}\right ) \text {Subst}\left (\int \frac {1}{1-\frac {g x^2}{c d}} \, dx,x,\frac {\sqrt {a e+c d x}}{\sqrt {f+g x}}\right )}{64 c^2 d^2 g^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ &=-\frac {5 (c d f-a e g)^3 \sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 c d g^3 \sqrt {d+e x}}+\frac {5 (c d f-a e g)^2 (f+g x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{32 g^3 \sqrt {d+e x}}-\frac {5 (c d f-a e g) (f+g x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 g^2 (d+e x)^{3/2}}+\frac {(f+g x)^{3/2} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{4 g (d+e x)^{5/2}}-\frac {5 (c d f-a e g)^4 \sqrt {a e+c d x} \sqrt {d+e x} \tanh ^{-1}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {f+g x}}\right )}{64 c^{3/2} d^{3/2} g^{7/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.61, size = 235, normalized size = 0.62 \begin {gather*} \frac {(c d f-a e g)^4 ((a e+c d x) (d+e x))^{5/2} \left (\frac {\sqrt {c} \sqrt {d} \sqrt {g} (a e+c d x) \sqrt {f+g x} \left (15 g^3+\frac {73 c d g^2 (f+g x)}{a e+c d x}-\frac {55 c^2 d^2 g (f+g x)^2}{(a e+c d x)^2}+\frac {15 c^3 d^3 (f+g x)^3}{(a e+c d x)^3}\right )}{(c d f-a e g)^4}-\frac {15 \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {f+g x}}{\sqrt {g} \sqrt {a e+c d x}}\right )}{(a e+c d x)^{5/2}}\right )}{192 c^{3/2} d^{3/2} g^{7/2} (d+e x)^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[f + g*x]*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(d + e*x)^(5/2),x]

[Out]

((c*d*f - a*e*g)^4*((a*e + c*d*x)*(d + e*x))^(5/2)*((Sqrt[c]*Sqrt[d]*Sqrt[g]*(a*e + c*d*x)*Sqrt[f + g*x]*(15*g
^3 + (73*c*d*g^2*(f + g*x))/(a*e + c*d*x) - (55*c^2*d^2*g*(f + g*x)^2)/(a*e + c*d*x)^2 + (15*c^3*d^3*(f + g*x)
^3)/(a*e + c*d*x)^3))/(c*d*f - a*e*g)^4 - (15*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[f + g*x])/(Sqrt[g]*Sqrt[a*e + c*d*
x])])/(a*e + c*d*x)^(5/2)))/(192*c^(3/2)*d^(3/2)*g^(7/2)*(d + e*x)^(5/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(731\) vs. \(2(320)=640\).
time = 0.14, size = 732, normalized size = 1.95

method result size
default \(-\frac {\sqrt {g x +f}\, \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (-96 c^{3} d^{3} g^{3} x^{3} \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}+15 \ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}}{2 \sqrt {d g c}}\right ) a^{4} e^{4} g^{4}-60 \ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}}{2 \sqrt {d g c}}\right ) a^{3} c d \,e^{3} f \,g^{3}+90 \ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}}{2 \sqrt {d g c}}\right ) a^{2} c^{2} d^{2} e^{2} f^{2} g^{2}-60 \ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}}{2 \sqrt {d g c}}\right ) a \,c^{3} d^{3} e \,f^{3} g +15 \ln \left (\frac {2 c d g x +a e g +c d f +2 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}}{2 \sqrt {d g c}}\right ) c^{4} d^{4} f^{4}-272 a \,c^{2} d^{2} e \,g^{3} x^{2} \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}-16 c^{3} d^{3} f \,g^{2} x^{2} \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}-236 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}\, a^{2} c d \,e^{2} g^{3} x -72 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}\, a \,c^{2} d^{2} e f \,g^{2} x +20 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}\, c^{3} d^{3} f^{2} g x -30 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}\, a^{3} e^{3} g^{3}-146 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}\, a^{2} c d \,e^{2} f \,g^{2}+110 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}\, a \,c^{2} d^{2} e \,f^{2} g -30 \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, \sqrt {d g c}\, c^{3} d^{3} f^{3}\right )}{384 \sqrt {e x +d}\, c d \sqrt {\left (g x +f \right ) \left (c d x +a e \right )}\, g^{3} \sqrt {d g c}}\) \(732\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x+f)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/384*(g*x+f)^(1/2)*((c*d*x+a*e)*(e*x+d))^(1/2)*(-96*c^3*d^3*g^3*x^3*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2
)+15*ln(1/2*(2*c*d*g*x+a*e*g+c*d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2))/(d*g*c)^(1/2))*a^4*e^4*g^4-60*
ln(1/2*(2*c*d*g*x+a*e*g+c*d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2))/(d*g*c)^(1/2))*a^3*c*d*e^3*f*g^3+90
*ln(1/2*(2*c*d*g*x+a*e*g+c*d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2))/(d*g*c)^(1/2))*a^2*c^2*d^2*e^2*f^2
*g^2-60*ln(1/2*(2*c*d*g*x+a*e*g+c*d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2))/(d*g*c)^(1/2))*a*c^3*d^3*e*
f^3*g+15*ln(1/2*(2*c*d*g*x+a*e*g+c*d*f+2*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2))/(d*g*c)^(1/2))*c^4*d^4*f^4
-272*a*c^2*d^2*e*g^3*x^2*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2)-16*c^3*d^3*f*g^2*x^2*((g*x+f)*(c*d*x+a*e))^
(1/2)*(d*g*c)^(1/2)-236*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2)*a^2*c*d*e^2*g^3*x-72*((g*x+f)*(c*d*x+a*e))^(
1/2)*(d*g*c)^(1/2)*a*c^2*d^2*e*f*g^2*x+20*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2)*c^3*d^3*f^2*g*x-30*((g*x+f
)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2)*a^3*e^3*g^3-146*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2)*a^2*c*d*e^2*f*g^2
+110*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2)*a*c^2*d^2*e*f^2*g-30*((g*x+f)*(c*d*x+a*e))^(1/2)*(d*g*c)^(1/2)*
c^3*d^3*f^3)/(e*x+d)^(1/2)/c/d/((g*x+f)*(c*d*x+a*e))^(1/2)/g^3/(d*g*c)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2),x, algorithm="maxima")

[Out]

integrate((c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x)^(5/2)*sqrt(g*x + f)/(x*e + d)^(5/2), x)

________________________________________________________________________________________

Fricas [A]
time = 2.43, size = 1073, normalized size = 2.85 \begin {gather*} \left [\frac {4 \, {\left (48 \, c^{4} d^{4} g^{4} x^{3} + 8 \, c^{4} d^{4} f g^{3} x^{2} - 10 \, c^{4} d^{4} f^{2} g^{2} x + 15 \, c^{4} d^{4} f^{3} g + 15 \, a^{3} c d g^{4} e^{3} + {\left (118 \, a^{2} c^{2} d^{2} g^{4} x + 73 \, a^{2} c^{2} d^{2} f g^{3}\right )} e^{2} + {\left (136 \, a c^{3} d^{3} g^{4} x^{2} + 36 \, a c^{3} d^{3} f g^{3} x - 55 \, a c^{3} d^{3} f^{2} g^{2}\right )} e\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {g x + f} \sqrt {x e + d} + 15 \, {\left (c^{4} d^{5} f^{4} + a^{4} g^{4} x e^{5} - {\left (4 \, a^{3} c d f g^{3} x - a^{4} d g^{4}\right )} e^{4} + 2 \, {\left (3 \, a^{2} c^{2} d^{2} f^{2} g^{2} x - 2 \, a^{3} c d^{2} f g^{3}\right )} e^{3} - 2 \, {\left (2 \, a c^{3} d^{3} f^{3} g x - 3 \, a^{2} c^{2} d^{3} f^{2} g^{2}\right )} e^{2} + {\left (c^{4} d^{4} f^{4} x - 4 \, a c^{3} d^{4} f^{3} g\right )} e\right )} \sqrt {c d g} \log \left (-\frac {8 \, c^{2} d^{3} g^{2} x^{2} + 8 \, c^{2} d^{3} f g x + c^{2} d^{3} f^{2} + a^{2} g^{2} x e^{3} - 4 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} {\left (2 \, c d g x + c d f + a g e\right )} \sqrt {c d g} \sqrt {g x + f} \sqrt {x e + d} + {\left (8 \, a c d g^{2} x^{2} + 6 \, a c d f g x + a^{2} d g^{2}\right )} e^{2} + {\left (8 \, c^{2} d^{2} g^{2} x^{3} + 8 \, c^{2} d^{2} f g x^{2} + 6 \, a c d^{2} f g + {\left (c^{2} d^{2} f^{2} + 8 \, a c d^{2} g^{2}\right )} x\right )} e}{x e + d}\right )}{768 \, {\left (c^{2} d^{2} g^{4} x e + c^{2} d^{3} g^{4}\right )}}, \frac {2 \, {\left (48 \, c^{4} d^{4} g^{4} x^{3} + 8 \, c^{4} d^{4} f g^{3} x^{2} - 10 \, c^{4} d^{4} f^{2} g^{2} x + 15 \, c^{4} d^{4} f^{3} g + 15 \, a^{3} c d g^{4} e^{3} + {\left (118 \, a^{2} c^{2} d^{2} g^{4} x + 73 \, a^{2} c^{2} d^{2} f g^{3}\right )} e^{2} + {\left (136 \, a c^{3} d^{3} g^{4} x^{2} + 36 \, a c^{3} d^{3} f g^{3} x - 55 \, a c^{3} d^{3} f^{2} g^{2}\right )} e\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {g x + f} \sqrt {x e + d} + 15 \, {\left (c^{4} d^{5} f^{4} + a^{4} g^{4} x e^{5} - {\left (4 \, a^{3} c d f g^{3} x - a^{4} d g^{4}\right )} e^{4} + 2 \, {\left (3 \, a^{2} c^{2} d^{2} f^{2} g^{2} x - 2 \, a^{3} c d^{2} f g^{3}\right )} e^{3} - 2 \, {\left (2 \, a c^{3} d^{3} f^{3} g x - 3 \, a^{2} c^{2} d^{3} f^{2} g^{2}\right )} e^{2} + {\left (c^{4} d^{4} f^{4} x - 4 \, a c^{3} d^{4} f^{3} g\right )} e\right )} \sqrt {-c d g} \arctan \left (\frac {2 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {-c d g} \sqrt {g x + f} \sqrt {x e + d}}{2 \, c d^{2} g x + c d^{2} f + a g x e^{2} + {\left (2 \, c d g x^{2} + c d f x + a d g\right )} e}\right )}{384 \, {\left (c^{2} d^{2} g^{4} x e + c^{2} d^{3} g^{4}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2),x, algorithm="fricas")

[Out]

[1/768*(4*(48*c^4*d^4*g^4*x^3 + 8*c^4*d^4*f*g^3*x^2 - 10*c^4*d^4*f^2*g^2*x + 15*c^4*d^4*f^3*g + 15*a^3*c*d*g^4
*e^3 + (118*a^2*c^2*d^2*g^4*x + 73*a^2*c^2*d^2*f*g^3)*e^2 + (136*a*c^3*d^3*g^4*x^2 + 36*a*c^3*d^3*f*g^3*x - 55
*a*c^3*d^3*f^2*g^2)*e)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(g*x + f)*sqrt(x*e + d) + 15*(c^4*d^5*f
^4 + a^4*g^4*x*e^5 - (4*a^3*c*d*f*g^3*x - a^4*d*g^4)*e^4 + 2*(3*a^2*c^2*d^2*f^2*g^2*x - 2*a^3*c*d^2*f*g^3)*e^3
 - 2*(2*a*c^3*d^3*f^3*g*x - 3*a^2*c^2*d^3*f^2*g^2)*e^2 + (c^4*d^4*f^4*x - 4*a*c^3*d^4*f^3*g)*e)*sqrt(c*d*g)*lo
g(-(8*c^2*d^3*g^2*x^2 + 8*c^2*d^3*f*g*x + c^2*d^3*f^2 + a^2*g^2*x*e^3 - 4*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 +
a*d)*e)*(2*c*d*g*x + c*d*f + a*g*e)*sqrt(c*d*g)*sqrt(g*x + f)*sqrt(x*e + d) + (8*a*c*d*g^2*x^2 + 6*a*c*d*f*g*x
 + a^2*d*g^2)*e^2 + (8*c^2*d^2*g^2*x^3 + 8*c^2*d^2*f*g*x^2 + 6*a*c*d^2*f*g + (c^2*d^2*f^2 + 8*a*c*d^2*g^2)*x)*
e)/(x*e + d)))/(c^2*d^2*g^4*x*e + c^2*d^3*g^4), 1/384*(2*(48*c^4*d^4*g^4*x^3 + 8*c^4*d^4*f*g^3*x^2 - 10*c^4*d^
4*f^2*g^2*x + 15*c^4*d^4*f^3*g + 15*a^3*c*d*g^4*e^3 + (118*a^2*c^2*d^2*g^4*x + 73*a^2*c^2*d^2*f*g^3)*e^2 + (13
6*a*c^3*d^3*g^4*x^2 + 36*a*c^3*d^3*f*g^3*x - 55*a*c^3*d^3*f^2*g^2)*e)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)
*e)*sqrt(g*x + f)*sqrt(x*e + d) + 15*(c^4*d^5*f^4 + a^4*g^4*x*e^5 - (4*a^3*c*d*f*g^3*x - a^4*d*g^4)*e^4 + 2*(3
*a^2*c^2*d^2*f^2*g^2*x - 2*a^3*c*d^2*f*g^3)*e^3 - 2*(2*a*c^3*d^3*f^3*g*x - 3*a^2*c^2*d^3*f^2*g^2)*e^2 + (c^4*d
^4*f^4*x - 4*a*c^3*d^4*f^3*g)*e)*sqrt(-c*d*g)*arctan(2*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(-c*d*g
)*sqrt(g*x + f)*sqrt(x*e + d)/(2*c*d^2*g*x + c*d^2*f + a*g*x*e^2 + (2*c*d*g*x^2 + c*d*f*x + a*d*g)*e)))/(c^2*d
^2*g^4*x*e + c^2*d^3*g^4)]

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)**(1/2)*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/(e*x+d)**(5/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 4369 deep

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x+f)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {f+g\,x}\,{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{5/2}}{{\left (d+e\,x\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((f + g*x)^(1/2)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2))/(d + e*x)^(5/2),x)

[Out]

int(((f + g*x)^(1/2)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2))/(d + e*x)^(5/2), x)

________________________________________________________________________________________